Experimental Particle Physics 2020-2021

Exam questions

Please be aware that logging in (opening the test) for the exam means the same as showing up for an exam; your presence will be recorded and your efforts will be graded.

Question 1 (2 points)

Assuming that charge collection is complete and that electronic noise is negligible, find the expected energy resolution (in percent) of a germanium detector for the 0.662 MeV gamma rays from ¹³⁷Cs.

Question 2 (4 points)

The intrinsic detection efficiency for a gas-filled counter (proportional counter or Geiger-Mueller tube) when used with medium-energy gamma rays (say 1 MeV) will depend on the counter wall thickness as shown in figure 1.

- Explain the general shape of this curve and how gamma-rays are detected by such counter **(1.5 points)**.
- Give an order-of-magnitude estimate for the optimum wall thickness *t_m* and relate it to basic physical properties **(2.5 points)**.

Please assume that the counter has structure as shown in figure 2. Walls are made of aluminium ($\rho = 2.7 \text{ g/cm}^3$, Z = 13). The counter is filled with air at the pressure of 0.1 bar and therefore, gamma-rays mainly interact with the walls.

Question 3 (4 points)

Calculate the amplitude of the signal pulse expected from a NaI(Tl)-PM tube combination under the following circumstances:

- Radiation energy loss: 1.2 MeV
- Light collection efficiency: 70%
- Photocathode efficiency: 20%
- PM electron gain: 100 000
- Anode capacitance: 100 pF

As a signal pulse consider the pulse amplitude (voltage) induced due to the anode capacitance.

Additional material

Figure 7-10 Stopping power of electrons in the energy range from 0.01 MeV to 100 MeV for a number of elements. For low-Z substances, dE/dx is almost constant between about 0.5 MeV and several MeV. The rise of the curves at high energies is due to increasing bremsstrahlung probability.

Figure 7.4 Range-energy relationship for electrons in air and in aluminum.

Relevant properties of intrinsic Si and Ge

	Si	Ge
atomic number	14	32
density (g/cm ³)	2.33	5.32
atomic density (atoms/cm ³)	4.96 x 10 ²²	4.41 x 10 ²²
dielectric constant (relative to vacuum)	12	16
band gap (eV) 300 K	1.115	0.665
0 K	1.165	0.746
intrinsic carrier density at 300 K (/cm ³)	1.5 x 1010	2.4 x 10 ¹³
mobility (cm²/V/s) at 300 K: electrons	1350	3900
holes	480	1900
mobility (cm²/V/s) at 77 K: electrons	2.1×10^{4}	3.6 x 104
holes	1.1×10^{4}	4.2 x 10 ⁴
ionisation energy (eV) 300 K	3.62	(*)
77 K	3.76	2.96

Table 8.3 Properties of Common Inorganic Scintillators

						Relative Pulse			
	Specific	Wavelength of	Refractive		Abs. Light Yield	Height Using			
	Gravity	Max. Emission	Index	Decay Time (µs)	in Photons/MeV	Bialk. PM tube	References		
Alkali Halides									
NaI(Tl)	3.67	415	1.85	0.23	38 000	1.00			
CsI(Tl)	4.51	540	1.80	0.68 (64%), 3.34 (36%)	65 000	0.49	78, 90, 91		
CsI(Na)	4.51	420	1.84	0.46, 4.18	39 000	1.10	92		
Li(Eu)	4.08	470	1.96	1.4	11 000	0.23			
Other Slow Inorganics									
BGO	7.13	480	2.15	0.30	8200	0.13			
$CdWO_4$	7.90	470	2.3	1.1 (40%), 14.5 (60%)	15 000	0.4	98-100		
ZnS(Ag) (polycrystalline)	4.09	450	2.36	0.2		1.3ª			
CaF ₂ (Eu)	3.19	435	1.47	0.9	24 000	0.5			
Unactivated Fast Inorganics									
BaF ₂ (fast component)	4.89	220		0.0006	1400	na	107-109		
BaF2 (slow component)	4.89	310	1.56	0.63	9500	0.2	107-109		
CsI (fast component)	4.51	305		0.002 (35%), 0.02 (65%)	2000	0.05	113-115		
CsI (slow component)	4.51	450	1.80	multiple, up to several μs	varies	varies	114, 115		
CeF ₃	6.16	310, 340	1.68	0.005, 0.027	4400	0.04 to 0.05	76, 116, 117		
Cerium-Activated Fast Inorganics									
GSO	6.71	440	1.85	0.056 (90%), 0.4 (10%)	9000	0.2	119-121		
YAP	5.37	370	1.95	0.027	18 000	0.45	78, 125		
YAG	4.56	550	1.82	0.088 (72%), 0.302 (28%)	17 000	0.5	78, 127		
LSO	7.4	420	1.82	0.047	25 000	0.75	130, 131		
LuAP	8.4	365	1.94	0.017	17 000	0.3	134, 136, 138		
Glass Scintillators									
Ce activated Li glass ^b	2.64	400	1.59	0.05 to 0.1	3500	0.09	77, 145		
Tb activated glass ^b	3.03	550	1.5	~3000 to 5000	~50 000	na	145		
For comparison, a typical organic (plastic) scintillator:									
NE102A	1.03	423	1.58	0.002	10 000	0.25			

"for alpha particles

^bProperties vary with exact formulation. Also see Table 15.1.

The grading scheme

- written idea on how to solve the problem: 20%
- 80% of the grade is equally shared by steps required by the problem. Number of steps depends on the method chosen by student to solve the problem. If there is a mistake in derivation during the step, grade for this step is reduced by 20%.